At the heart of new roof system is a proprietary inorganic phase change material sandwiched between two reflective surfaces made of aluminum foil. This material is installed as a dynamic thermal barrier between the roof and attic area, creating separate air channels between roof rafters. The configuration is compatible with traditional wood and steel framing technologies. Moreover, the new phase change material overcomes problems that have plagued phase change materials for the past 40 years.
"In the 1970s and 1980s the housing industry made several moderately successful attempts to use phase change materials," Kosny said. "While these materials enhanced building energy performance, they were in many cases chemically unstable, were subject to corrosion or other durability problems and suffered from loss of phase change capability."
Another shortcoming of some previous phase change materials was their susceptibility to fire. Fire is not a problem with the ORNL material, according to Kosny, who noted that ORNL researchers are working with leading manufacturers of phase change material on the development of non-flammable organic material.
In tests at ORNL, phase change materials perform like conventional materials by absorbing heat as the temperature increases. However, as the material melts it continues to absorb large amounts of heat without a significant increase in temperature. Then, as night falls and the ambient temperature around the liquid phase change material decreases, it solidifies again and releases the stored heat to the night sky, Miller said.
With an outside temperature of 92 degrees Fahrenheit, tests at ORNL's Buildings Technology Center show temperatures of conventional attics at 127 degrees Fahrenheit vs. attic temperatures of 105 degrees with the Dynamic Attic Heat Exhaust System. Kosny and Miller filed a patent last year for this technology.
"The next generation roof will consist of infrared reflective materials that are dark in color yet reflect light as if they were white," Miller said. "In addition, radiant barriers and phase change materials will be integrated into a dynamic attic system that reduces utility bills for homeowners. The conservation strategies contribute on a much grander scale by lowering peak demand on utilities, reducing carbon emissions and, ultimately, they could lead to cleaner air."
If just half of the homeowners in the U.S. made sure they had R30 attic floor insulation and used this roof and attic system, the nation could reduce its Btu (British Thermal Unit) demand by about 100 trillion Btu.
This research is funded by the DOE Office of Energy Efficiency and Renewable Energy's Building Technologies program. UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.
August 30, 2007
Roof Design - For Energy Saving
0 comments CLICK TO (read) COMMENT
Labels:
Energy Savings,
Updates
Technorati:
Energy Savings,
Updates
August 27, 2007
God & Science
This story was sent to me by a friend & thought I should share it with you all.
An atheist professor of philosophy speaks to his class on the problem science has with God, The Almighty. He asks one of his new students to stand and.....
Prof: So you believe in God?
Student: Absolutely, sir.
Prof: Is God good?
Student: Sure.
Prof: Is God all-powerful?
Student: Yes.
Prof: My brother died of cancer even though he prayed to God to heal him. Most of us would attempt to help others who are ill. But God didn't. How is this God good then? Hmm?
(Student is silent.)
Prof: You can't answer, can you? Let's start again, young fella. Is God good?
Student: Yes.
Prof: Is Satan good?
Student: No.
Prof: Where does Satan come from?
Student: From...God...
Prof: That's right. Tell me son, is there evil in this world?
Student: Yes.
Prof: Evil is everywhere, isn't it? And God did make everything. Correct?
Student: Yes.
Prof: So who created evil?
( Student does not answer.)
Prof: Is there sickness? Immorality? Hatred? Ugliness? All these terrible things exist in the world, don't they?
Student: Yes, sir.
Prof: So, who created them?
( Student has no answer.)
Prof: Science says you have 5 senses you use to identify and observe the world around you. Tell me, son...Have you ever seen God?
Student: No, sir.
Prof: Tell us if you have ever heard your God?
Student: No, sir.
Prof: Have you ever felt your God, tasted your God, smelt your God? Have you ever had any sensory perception of God for that matter?
Student: No, sir. I'm afraid I haven't.
Prof: Yet you still believe in Him?
Student: Yes.
Prof: According to empirical, t estable, demonstrable protocol, science says your GOD doesn't exist. What do you say to that, son?
Student: Nothing. I only have my faith.
Prof: Yes. Faith. And that is the problem science has.
Student : Professor, is there such a thing as heat?
Prof: Yes.
Student : And is there such a thing as cold?
Prof: Yes.
Student : No sir. There isn't.
(The lecture theatre becomes very quiet with this turn of events.)
Student : Sir, you can have lots of heat, even more heat, superheat, mega heat, white heat, a little heat or no heat. But we don't have anything called cold. We can hit 458 degrees below zero which is no heat, but we can't go any further after that. There is
no such thing as cold. Cold is only a word we use to describe the absence of heat. We cannot measure cold. Heat is energy. Cold is not the opposite of heat, sir,
just the absence of it.
(There is pin-drop silence in the lecture theatre.)
Student : What about darkn ess, Professor? Is there such a thing as darkness?
Prof: Yes. What is night if there isn't darkness?
Student : You're wrong again, sir. Darkness is the absence of something. You can have low light, normal light, bright light, flashing light....But jif you have no light constantly, you have nothing and it's called darkness, isn't it? In reality, darkness isn't. If it were you would be able to make darkness darker, wouldn't you?
Prof: So what is the point you are making, young man?
Student: Sir, my point is your philosophical premise is flawed.
Prof: Flawed? Can you explain how?
Student : Sir, you are working on the premise of duality. You argue there is life and then there is death, a good God and a bad God. You are viewing the concept of God as something finite, something we can measure. Sir, science can't even explain a thought. It
uses electricity and magnetism, but has never seen, much less fully understood either one. To view death as the opposite of life is to be ignorant of the fact that death cannot exist as a substantive thing. Death is not the opposite of life: just the absence of it.
Now tell me, Professor. Do you teach your students that they evolved from a monkey?
Prof: If you are referring to the natural evolutionary process, yes, of course, I do.
Student : Have you ever observed evolution with your own eyes, sir?
(The Professor shakes his head with a smile, beginning to realize where the argument is going.)
Student : Since no one has ever observed the process of evolution at work and cannot even prove that this process is an on-going endeavor, are you not teaching
your opinion, sir? Are you not a scientist but a preacher? (The class is in uproar.)
Student : Is there anyone in the class who has ever seen the Professor's brain?
(The class breaks out into laughter.)
Student : Is there anyone here who has ever heard the Professo r's brain, felt it, touched or smelt it? No one appears to have done so. So, according to the established rules of empirical, stable, demonstrable protocol, science says that you have no brain,sir.
With all due respect, sir, how do we then trust your lectures, sir?
(The room is silent. The professor stares at the student, his face unfathomable.)
Prof: I guess you'll have to take them on faith, son.
Student: That is it sir... The link between man & god is FAITH. That is all that keeps things moving & alive.
I believe you have enjoyed the conversation...and if so...you'll probably want your friends/colleagues to enjoy the same...won't you?...forward them to increase their knowledge... this is a true st ory, and the student was none other than.........
APJ Abdul Kalam ,
The President of India
1 Comment CLICK TO (read) COMMENT
Labels:
Interesting Facts
Technorati:
Interesting Facts
August 25, 2007
Booster Pumps - Improve your vacuum system performance
Mechanical vacuum boosters are dry pumps that meet most of the ideal vacuum pump requirements. They work on positive displacement principle and are used to boost the performance of water ring / oil ring / rotating vane / piston pumps and steam or water ejectors. They are used in combination with any one of the mentioned pumps, to overcome their limitations. Vacuum boosters pumps offer very desirable characteristics, which make them the most cost effective and power efficient option.
Major Advantages
1. Can be integrated with any installed vacuum systems such as steam ejectors, water ring pumps, oil sealed pumps, and water ejectors etc.
2. The vacuum booster is a dry pump, as it does not use any pumping fluid. It pumps vapor or gases with equal ease. Small amounts of condensed fluid can also be pumped.
3. Vacuum boosters are power efficient. Very often a combination of vacuum booster and suitable backup pump result in reduced power consumption per unit of pumping speed. They provide high pumping speeds even at low pressures.
4. Boosters increase the working vacuum of the process, in most cases very essential for process performance and efficiency. Vacuum booster can be used over a wide working pressure range, from 100 Torr down to 0.001 Torr (mm of mercury), with suitable arrangement of backup pumps.
5. It has very low pump friction losses, hence requires relatively low power for high volumetric speeds. Typically, their speeds, at low vacuums are 20-30times higher than corresponding vane pumps/ring pumps of equivalent power.
6. Use of electronic control devices such as variable frequency control drive allows modifying vacuum boosters operating characteristics to conform to the operational requirements of the prime vacuum pumps. Hence they can be easily integrated into all existing pumping set up to boost their performance
7. Vacuum boosters don’t have any valves, rings, stuffing box etc, therefore, do not demand regular maintenance.
8. Due to vapor compression action by the booster, the pressure at the discharge of booster (or inlet of backup pump) is maintained high, resulting in advantages such as low back streaming of prime pump fluid, effective condensation even at higher condenser temperatures and improvement of the backup pump efficiency.
3 comments CLICK TO (read) COMMENT
Labels:
Energy Savings,
Interesting Facts,
Updates
Technorati:
Energy Savings,
Interesting Facts,
Updates
August 24, 2007
Acetic Acid Heat Exchanger Failure
We have a shell & tube heat exchanger as feed preheater in our glycol ether acetate plant where mixed feed is preheated to ~130-140°C using steam on shell side. It has failed recently & we observed few strange things.
Background
In the process of manufacturing of Glycol ether acetate (Or Cellosolve acetate) we conventionally use Cellosolve & Acetic acid and esterification reaction occurs with the water formation in CSTR reactors. Toluene is used as entrainer for water removal.
After reaction step, the product mix is sent to mix fraction column separation where All unreacted components and toluene are removed as overhead & recycled back to the reactor.
Feed is mixed with this recycle stream & sent to a preheater upstream of the reactor. The mixture is preheated to ~130-140°C using steam.
Incident
On 17 Aug when we stopped the plant for some modification, we found the organic compounds in the condensate line for the reactors. So initially we thought about some leakages in the internal coils of the reactor but while opening up the flanges in the system we found that organics are not coming from the reactor side rather coming from the header side. So we isolated entire system & traced it back to this exchanger.
After confirmation from the drain point at max elevation, we decided to open it in the morning of 18 Aug and found this scene at site.
This is a 6 pass exchanger with organics on tube side & heating steam on shell side.
The tube failure was found on the inlet side of process fluid which is at left bottom in actual orientation also, as shown in the pic above.
It is clear from the pics that other tubes dont have even a single spot of corrsoion or leakge as shown above & below.
So what is the situation of failure at the time of opening of exchanger & why it is so?
Just another enlarged view of failed tubes at tubesheet end.........
We have inspected the tubes using boroscopy from inside & found that the actual leakage is inside the tubes at the end side of first pass (outlet side) not on the side shown (Inlet of first pass).
The picture above is showing a hole at the top left and severe pitting inside the tubes.
Our mechanical analysis is under progress & I will update this one as soon as I get those reports.
Till then I invite your comments.
1 Comment CLICK TO (read) COMMENT
Labels:
Articles,
Shortcuts / Tips
Technorati:
Articles,
Shortcuts / Tips
August 21, 2007
Fouling Factors for Cooling Water Service
Just found a list of compiled factors, so I wish to share it with all of you at one place. I will post others also on this as Update. Generally we find U values but not fouling factors, so it may be useful for many.
0 comments CLICK TO (read) COMMENT
Labels:
Interesting Facts,
Shortcuts / Tips
Technorati:
Interesting Facts,
Shortcuts / Tips
August 16, 2007
Ethanol - Facts & Common Sense
- Ethanol,
- Butanol (most Recent) &
- Dimethyl Ether (DME)
You will find many pros & cons of each of them...However my first focus is are they really going to contribute energy saving, cost saving, renewability (reducing environment emmission in totality) OR NOT...............
Energy Saving
The discussion on Energy saving in the production of these biofuels is not relevant to me. Becasue if we talk about this we are going to violate fundamnetal law of energy conservation. Total energy of the universe is conserved it can neither be created or destroyed only it can change from one form to another. So why to talk about it. It is already mentioned & proved that the projections from United States Department of Agriculture (USDA), Economic Research Service Report number 814 titled "Estimating The Net Energy Balance Of Corn Ethanol: An Update" published in July of 2002 are completely misleading and there is no benefit in diverting food material for fuel production.
Its a gimmick played by US & EU to divert the attention of developing countries so that artificial food shortage can be created there & then they can improve their agriculture business by exporting food to them.
Anyway, this is not my area (May be I can discuss in comments section if somebody is interested), so we should consider the total energy in production & consumption both which are going to remain same combinedly for any fuel cycle. So if we do the comparison considering all factors including energy required for production of grains, It should not result in either deficit or surplus of the energy balance. However, no production process can have >100% efficiency. This is against thermodynamics.
It can be proven thermodynamically also by any expert. Following references are useful here
If Ethanol production is so much energy efficient (Lowest prjection of 35%) than that means every 100 Units of input energy can generate 135 Units & so on. Considering this growth, world can generate excess energy in just under 20 years based on current global consumption of ~3000 billion gallons / year of Eqv Oil and @1% growth rate in the consumption.
Ethanol production rate is kept same at same Biomass (in this maths calculation, which should have been done by so called experts with so much funding available from govt, agencies & whosoever is interested in improving his related business) be it corn, sugar cane or anything with the latest figures of efficient farming, production & conversion efficiencies which is considered only at 20 Billion gallons/year in the begining which is only 1/10 or 10% of current fossil fuel consumption.
Wow!
That means thereafter, we wont have any problem of energy shortage in the world.
Is it really so????????????????
The answer may be derived from the results of Brazil and is clearly NO.
I will post other issues related to this later as I see that
1. It is not a renewable & sustainable fuel.
2. It is going to pollute the environment in the same way as we do with fossil fuels.
3. Net energy content may be inefficient than fossil fuels.
4. Diverting attention of governments for policies related to social welfare due to subsidies.
5. No large scale sustainable future for Ethanol or any other food crops derived fuels.
August 13, 2007
Catalyst to turn CO2 into fuel
"Carbon monoxide can be used to build new carbon-carbon bonds," explains Goettmann. "We have taken the first step towards using carbon dioxide from the atmosphere as a source for chemical synthesis."
2 comments CLICK TO (read) COMMENT
Labels:
Articles,
Interesting Facts,
Technologies
Technorati:
Articles,
Interesting Facts,
Technologies
August 08, 2007
A simple way to convert waste methane
Specifically, the researchers found a simple way to convert methane into methyl chloride, which can easily be converted into petrochemicals such as ethylene or propylene, used to make plastics. Ethylene and propylene, says Johannes Lercher, a chemistry professor at the Munich University of Technology, are far easier to transport than methane is.
The process will also face competition. New gas-to-liquids technology, which converts natural gas into synthetic liquid fuels, is starting to become popular as an alternative to liquefied natural gas, and it's garnering the attention of oil giants like Exxon and Shell. It has not yet been widely used, though, because it's expensive to implement: it requires a lot of energy and large facilities. Weckhuysen says that if Dow could develop an affordable commercial process based on it new reaction, it could compete with gas-to-liquids technology.
0 comments CLICK TO (read) COMMENT
Labels:
Energy Savings,
Environment,
Technologies
Technorati:
Energy Savings,
Environment,
Technologies
August 01, 2007
Improve Your Boiler Efficiency
The contribution of dry flue gas is ~9-12% & ~5-8% due to presence of humidity & water in combustion products. The reason is that the flue gas temperature (generally 170 - 200°C) is limited by dew point to avoid condensation of downstream exchangers.
In the CHX™ condensing heat exchanger, all gas wetted surfaces are covered with DuPont Teflon~. The Teflon covered heat exchanger surfaces are impervious to all acids normally resulting from the combustion of fossil fuels. This allows the flue gas to be cooled to below the water vapor dew point with no subsequent corrosion of the heat exchanger surfaces. If this heat is not recovered it will account for a boiler's second largest thermodynamic loss.
If you find it useful or would like to add similar developments, kindly let me know.
2 comments CLICK TO (read) COMMENT
Labels:
Articles,
Energy Savings,
Technologies
Technorati:
Articles,
Energy Savings,
Technologies